Jasp Logiciel Mac
Stable release | |
---|---|
Repository | JASP Github page |
Written in | C++, R, JavaScript |
Operating system | Microsoft Windows, Mac OS X and Linux |
Type | Statistics |
License | GNU Affero General Public License |
Website | jasp-stats.org |
Tag for version 0.13.1.0 New feature: - Add option to check last digits in Benfords Law Bug fixes: - Fixes in Reliability ( jasp-stats/jasp-issues#870 jasp-stats/jasp-issues#855 jasp-stats/jasp-issues#853 jasp-stats/jasp-issues#841) - Fixing BGLMM beta distribution - Fixed some problems for windows users with non-ascii characters in their username ( jasp-stats/jasp-issues#835 and jasp-stats. .Part of the JASP Model Suite Questions should be directed to Alfred Yee, DSIAC, at 937-255-4608 or alfred.yee@dsiac.org Event Details The appearance of hyperlinks does not constitute endorsement by the U.S. Department of Defense (DoD) of non-U.S. Government sites or the information, products, or services contained therein. Name Functionality Platform & Code Language Documentation Download; CAST: Crime Analytics for Space-Time: Space-time cluster and other methods for point and polygon data. Email: info@jasp-stats.org NB. For feature requests, for help installing JASP, or for bug reports: please post your issue on our GitHub page so the JASP team can. The download version of JASP pour Mac is 0.6.6. This Mac app is distributed free of charge. The download is provided as is, with no modifications or changes made on our side.
JASP is a free and open-source program for statistical analysis supported by the University of Amsterdam. It is designed to be easy to use, and familiar to users of SPSS. It offers standard analysis procedures in both their classical and Bayesian form.[1][2] JASP generally produces APA style results tables and plots to ease publication. It promotes open science by integration with the Open Science Framework and reproducibility by integrating the analysis settings into the results. The development of JASP is financially supported by several universities and research funds.
Analyses[edit]
JASP offers frequentist inference and Bayesian inference on the same statistical models. Frequentist inference uses p-values and confidence intervals to control error rates in the limit of infinite perfect replications. Bayesian inference uses credible intervals and Bayes factors[3][4] to estimate credible parameter values and model evidence given the available data and prior knowledge.
The following analyses are available in JASP:
Analysis | Frequentist | Bayesian |
---|---|---|
A/B test | ||
ANOVA, ANCOVA, Repeated measures ANOVA and MANOVA | ||
AUDIT (module) | ||
Bain (module) | ||
Binomial test | ||
Confirmatory factor analysis (CFA) | ||
Contingency tables (including Chi-squared test) | ||
Correlation:[5]Pearson, Spearman, and Kendall | ||
Equivalence T-Tests: Independent, Paired, One-Sample | ||
Exploratory factor analysis (EFA) | ||
Linear regression | ||
Logistic regression | ||
Log-linear regression | ||
Machine Learning | ||
Mann-Whitney U and Wilcoxon | ||
Mediation Analysis | ||
Meta Analysis | ||
Mixed Models | ||
Multinomial test | ||
Network Analysis | ||
Principal component analysis (PCA) | ||
Reliability analyses: α, γδ, and ω | ||
Structural equation modeling (SEM) | ||
Summary Stats[6] | ||
T-tests: independent, paired, one-sample | ||
Visual Modeling: Linear, Mixed, Generalized Linear |
Other features[edit]
- Descriptive statistics and plots.
- Assumption checks for all analyses, including Levene's test, the Shapiro–Wilk test, and Q–Q plot.
- Imports SPSS files and comma-separated files.
- Open Science Framework integration.
- Data filtering: Use either R code or a drag-and-drop GUI to select cases of interest.
- Create columns: Use either R code or a drag-and-drop GUI to create new variables from existing ones.
- Copy tables in LaTeX format.
- PDF export of results.
Modules[edit]
- Summary statistics: Bayesian inference from frequentist summary statistics for t-test, regression, and binomial tests.
- BAIN: Bayesian informative hypotheses evaluation[7] for t-test, ANOVA, ANCOVA and linear regression.
- Network: Network Analysis allows the user to analyze the network structure of variables.
- Meta Analysis: Includes techniques for fixed and random effects analysis, fixed and mixed effects meta-regression, forest and funnel plots, tests for funnel plot asymmetry, trim-and-fill and fail-safe N analysis.
- Machine Learning: Machine Learning module contains 13 analyses for supervised an unsupervised learning:
- Regression
- Boosting Regression
- Random Forest Regression
- Regularized Linear Regression
- Classification
- K-Nearest Neighbors Classification
- Linear Discriminant Classification
- Clustering
- Regression
- SEM: Structural equation modeling.[8]
- JAGS module
- Discover distributions
- Equivalence testing
References[edit]
- ^Wagenmakers EJ, Love J, Marsman M, Jamil T, Ly A, Verhagen J, et al. (February 2018). 'Bayesian inference for psychology. Part II: Example applications with JASP'. Psychonomic Bulletin & Review. 25 (1): 58–76. doi:10.3758/s13423-017-1323-7. PMC5862926. PMID28685272.
- ^Love J, Selker R, Verhagen J, Marsman M, Gronau QF, Jamil T, Smira M, Epskamp S, Wil A, Ly A, Matzke D, Wagenmakers EJ, Morey MD, Rouder JN (2015). 'Software to Sharpen Your Stats'. APS Observer. 28 (3).
- ^Quintana DS, Williams DR (June 2018). 'Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP'. BMC Psychiatry. 18 (1): 178. doi:10.1186/s12888-018-1761-4. PMC5991426. PMID29879931.
- ^Brydges CR, Gaeta L (December 2019). 'An Introduction to Calculating Bayes Factors in JASP for Speech, Language, and Hearing Research'. Journal of Speech, Language, and Hearing Research. 62 (12): 4523–4533. doi:10.1044/2019_JSLHR-H-19-0183. PMID31830850.
- ^Nuzzo RL (December 2017). 'An Introduction to Bayesian Data Analysis for Correlations'. PM&R. 9 (12): 1278–1282. doi:10.1016/j.pmrj.2017.11.003. PMID29274678.
- ^Ly A, Raj A, Etz A, Marsman M, Gronau QF, Wagenmakers E (2017-05-30). 'Bayesian Reanalyses from Summary Statistics: A Guide for Academic Consumers'. Open Science Framework.
- ^Gu, Xin; Mulder, Joris; Hoijtink, Herbert (2018). 'Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses'. British Journal of Mathematical and Statistical Psychology. 71 (2): 229–261. doi:10.1111/bmsp.12110. ISSN2044-8317. PMID28857129.
- ^Kline, Rex B. (2015-11-03). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications. ISBN9781462523351.
External links[edit]
- jasp-desktop on GitHub
TerrSet is an integrated geospatial software system for monitoring and modeling the earth system for sustainable development. The TerrSet system incorporates the IDRISI GIS Analysis and IDRISI Image Processing tools along with a constellation of vertical applications. TerrSet offers the most extensive set of geospatial tools in the industry in a single, affordable package. There is no need to buy costly add-ons to extend your research capabilities.
Along with the software features mentioned below, TerrSet also includes utilities for import and export of all major file and imagery formats along with comprehensive documentation and tutorials.
TerrSet 2020 Software Features
IDRISI GIS Analysis
IDRISI Image Processing
Land Change Modeler
Jasp Logiciel Mac Gratuit
Habitat and Biodiversity Modeler
GeOSIRIS
Ecosystem Services Modeler
Earth Trends Modeler
Climate Change Adaptation Modeler
Jasp Logiciel Mac Os
TerrSet 2020 System Requirements
TerrSet is an object-oriented system designed for professional-level use on platforms employing the Microsoft Windows operating environment.
- Windows 8.1 and above, or Windows Server 2008 and above
- Microsoft ACE 2010 or Microsoft Office 2010 or later
- 1.3 GB hard drive space for application
- 7.5 GB hard drive space for tutorial data
- 8 GB RAM, 16 GB or more recommended
- HD display (1920×1080) or greater recommended